ラベル 電子工作 の投稿を表示しています。 すべての投稿を表示
ラベル 電子工作 の投稿を表示しています。 すべての投稿を表示

2021年11月2日火曜日

RFワールド No.56へ寄稿させていただきました

 10/29にCQ出版のRFワールド誌No.56が発刊されました。

 

RFワールド誌は『無線と高周波の技術解説マガジン』と銘打ち、無線通信はもちろんのこと産業や医療にかかわる高周波の利用の実際等詳細な解説を特徴とした季刊誌です。

今号と前号のNo.55で製作による無線・高周波の実践体験シリーズという特集の執筆を担当された7L4WVU原口OMのご紹介で、3出力プログラマブル・PLLクロックジェネレータIC Si5351A-B-GTの解説と使用例の記事を執筆させていただきました。

Si5351Aに関しては以前よりこのブログでも設定方法などの記事を投稿していましたが、今回は一旦総まとめという形で残すことができました。

RFワールドのサイトには各記事のpdfファイルやダウンロードサービス(私の記事でも制御プログラムのソースコードやバイナリを用意させていただきました)がありますので、興味がありましたらアクセスしてみてください。

なお残念なことに今回のNo.56をもってRFワールドは休刊となりますが、同出版社から刊行されているトランジスタ技術誌の常設コーナーとして記事を継続する予定だそうです。

2021年2月1日月曜日

電流モードD級(Current Mode Class D; CMCD)増幅回路の実装実験

 VN-xx02シリーズやVN-L5シリーズの終段増幅回路はE級増幅回路を採用し、高効率で消費電流や素子の発熱もかなり抑えていますが、E級ネットワークの性質上狭帯域で多バンド化は困難です。

そこで主に海外の事例をたどってみるとD級増幅が目にとまり、実装実験を試みました。(ここでいうところのD級はオーディオアンプのD級アンプとは異なります。追記:オーディオ用のD級もPWM変調をかけているVMCDの一種と記載されている文献がありました。

実験前にまずE級とD級の回路と動作をおさらいします。

E級は図のようにスイッチング素子の出力側にE級ネットワークという一つの共振回路を形成して素子のオンオフで各々素子にかかる電圧と電流をE級ネットワークで共振させゼロボルトスイッチング(ZVS)を実現しスイッチング損失を抑えて効率を高める方法です。


それに対してD級には2つの動作モードが存在しますがいずれもプッシュプル増幅回路に適用されます。

ひとつは電圧モードVoltage Mode Class Dで、素子がオンの時流れる電流が半正弦波状となりZVSとなった直後素子がオフとなりその間は電圧が最大になります。

もうひとつは今回実装した電流モードCurrent Mode Class Dで、素子がZVS後オフの間に電圧は半正弦波状となって再び電圧ゼロになったときに素子がオンとなり、オンの間流れる電流は最大になります。


いずれのモードもE級と同じくZVSを実現しているので高効率で、しかもE級のように電流電圧それぞれに共振させるのではなく出力回路に電流もしくは電圧にのみに対する共振回路を追加すればよいことになります。ただしE級に比べてのデメリットもあります(素子の出力容量による損失や、スイッチングのタイミングのずれによってZVSが崩れてスイッチング損失が生じる可能性がある)が、E級ネットワークを省けるため、例えば広帯域化の可能性も見えてきます。

D級増幅回路を実装している例はフィンランドのJUMA製135kHz、475kHz送信機、TX-136、TX-500の50W出力の終段回路やネットで見つけた400W級のRFパワーアンプくらいしかありません。

TX-136やTX-500を所有しているのでその高効率ぶりは体験していますが、今回E級プッシュプルを採用しているVN-L5シリーズにも適用できないかということで、CMCD化実験をしてみました。


上はVN-L5の終段E級プッシュプル増幅回路です。L1-C10、L2-C11がE級ネットワークなのでこれらを外してQ4,5のドレインをT3の3ピンと6ピンに各々直接繋げます。


実際のVN-L5オリジナルTX部の画像です。基板の右上の2つの小さなトロイダルコイルとその右側にある水色の四角いフィルムコンデンサを取り除き下の画像のように各FETのドレインを出力トランスに直接接続しました。

出力トランスに2次側の巻き数を半分に減らすことで、電源電圧13.8Vで14~15W程度の出力を得ましたが、出力トランスのコアの発熱が著しく長時間の出力にはどうやら耐えられそうにありません。そこで出力トランスをコンベンショナル型から伝送線路トランスに巻き方を変更することで出力トランスのコアの発熱は抑えられました。

またRFCも一つのコアにまとめる実験も行いましたがRFCコアの発熱が著しいため個別に用意するようにしました。

下の回路図が最終的なCMCD化終段回路です。


これは160m版も80m版も回路は同一で、LPFの定数のみバンド別となっています。

上の画像は片方のFETのドレイン電圧波形をオシロスコープで観察したキャプチャでおおよそFETオフ時の電圧は弧を描いています。

電流波形は今回観察できていませんが連続出力でもFETの発熱が緩やかなのでおそらくZVSにはなっているでしょう。

念のため160m版、80m版の出力波の高調波スプリアスを測定すると、2次3次高調波はいずれも-50dBc以下と新スプリアス基準はクリアしているようです。

80m版の高調波スプリアス

160m版の高調波スプリアス

ちなみに効率はおよそ75%前後とE級増幅回路と遜色ない程度でした。

そうゆうわけで今回のCMCD化実験ですが、いくつかのポイント(RFCと出力トランスなど)を押さえることで、LPFの切り替えによる多バンド化の可能性を少しばかり見出すことができました。

2021年1月8日金曜日

遅ればせながら本年もよろしくお願いいたします

 新年あけてはや1週間経過してしまいました。

 遅ればせながら本年もどうぞよろしくお願いいたします。


 昨年はCOVID-19蔓延の影響で無線関連のイベントはハムフェア含めほとんど中止になってしまったため主にキットの通信頒布に終始しましたが、本年もCOVID-19終息の兆しが見えない状況のためAKCでのイベント参加はやはり難しそうです。

ともあれ一人でできる範囲で活動は続けていくつもりです。

んで今回の本題ですが、年はじめ恒例のニューイヤーQSOパーティにちょっとだけ参加しました。今年は規約が変わって開催期間が長くなり参加しやすくなったので、まず160mのCWから出てみようと思いました。今までは160mのアンテナは自作SRAを上げていましたが、今回新たにアンテナを自作してみました。

アンテナはエレメントを過去に関西アマチュア無線フェスティバルで購入した3.6m長の大型ロッドアンテナを使用し、ローディングコイルを巻いてインピーダンス変換トランスで整合した短縮型1/4波長バーチカルアンテナとしました。

アンテナエレメントのロッドアンテナを同じ長さ程度の塩ビ管に入れてロッドアンテナの保護と支持を行い異径ジョイントでふた周大きい径の別の塩ビ管につなぎ、写真のように0.8mm径のUEWでローディングコイルを巻きました。

MMANAで計算したインダクタンスを目標に巻き数を決定し(今回の場合はVU40(48mm径)に0.8φUEWを100巻き、約220μHとしました)、巻いたコイルの下にマストクランプを取りつけ、ベランダの金具に設置した短いマストに取り付けました。


アンテナ本体をマストに取り付けたら、ロッドアンテナを伸ばしてアンテナアナライザで共振点を探ります。今回はnanoVNAではなくminiVNAproBTでandroidスマホにBluetooth接続して測定しました。余談ですが操作性はminiVNAproBTが良いですね。でも1台で済むnanoVNAも捨てがたいので、フィールドでどちらを使うかまだまだ悩んでいます。

ロッドアンテナを目いっぱい伸ばすと共振周波数は1.6MHzと低く出ました。周囲の影響もあると思いましたが、今回はローディングコイルは解かないで、ロッドアンテナを若干縮めるることで1.9MHzに共振するように調節を行いました。

共振周波数での純抵抗が約20ΩとMMANAの計算値より大きい(ローディングコイルのQが思ったより高くないのかもしれません)結果でしたが、トランシーバのアンテナインピーダンス50Ωに整合するため自作のインピーダンス変換トランス(マルチアンアン)を挿入し整合させた結果が下のスクリーンキャプチャです。


 VSWR1.5以内の周波数範囲は10kHz以下と狭いですが、1.9MHzバンド内に収まるためひとまずOKとしました。

ちなみにインピーダンス変換トランスの外観はこんな感じです。


 ケースの中には確かFT114-43にテフロン線を巻いて作ったマルチアンアンが入っていたと思います。ロータリースイッチでタップ切り替えを行いインピーダンスを合わせます。

VN-L5プロトタイプでNYP参加局を呼びまわりましたが、10W強出力でもよくピックアップしていただきました。計算上は超短縮型のためアンテナゲインは-10dBi以上でしたが、SRAよりは確実に飛んでいます。

今後はロッドアンテナを伸ばし切った状態で1.800MHzあたりに共振するようにローディングコイルの巻き数をやや減らし目にするなどもう少し調整を重ね常設アンテナとして仕上げようと考えています。

またローディングコイルを変更して80mや40mにも使えるようにすると面白そうです。ロッドアンテナを伸び縮めるだけでバンド内をフルカバーできるので便利かもしれません。

そういうわけで新年の初工作は160m短縮アンテナでした。

2020年12月31日木曜日

年末のお買い物

いよいよ2020年大晦日です。

今年はCOVID-19尽くしで生活や仕事、趣味のあらゆるジャンルに影響を及ぼされました。

そんな中新しいVN-L5シリーズがようやく正式に頒布、30台用意し24台頒布することが出来ました。早速製作完成レポートいただいたりしてホッとしたところです。

また海外通販でいくつか機器を購入して楽しませていただきました。

で、本日大晦日に届いたものはこれ。

AliExpressのストアから購入しましたが、55USDくらいだったかですが、注文してからおよそ1か月かかって大晦日の今日到着しました。

nanoVNAをベースにしているようで、端子などのレイアウトはnanoVNAにそっくりです。ただし基板むき出しでなくABSのケースに覆われています。

SNS上では粗悪クローンも出回っているようで、セルフテストで失敗するとのことです。

到着した個体は開発元の指定ストアからのもので多分クローンではなさそうでしたが、念のため早速セルフテストを実行し、その結果すべてパスしたのでクローンではないだろうと思われました。

ホッと一安心ということで、付属品の中にロッドアンテナがあったので測定入力に繋げ、ダミーロードに繋げたVN-4002で送信した波形を観察してみました。

自動マーカーが便利ですね。RBWは3kHzが限界でスキャンも遅いですが、HF帯の送信機の高調波スプリアスチェックなどにも使えそうです。

またほかにハンドヘルドオシロスコープもtinySAの前に到着しました。

VNシリーズとほぼ同じ大きさですが、アナログ帯域が120MHzをうたっています。


そこでSi5351Aで120MHzの信号を生成し観察してみました。

さすがに何とか波形は確認できる程度でしたが、30MHz程度であれば使えそうです。

これら小さな測定器を駆使して来年もモノづくり続けようと思います。

 

皆さん良いお年をお迎えくださいませ。

2020年12月18日金曜日

簡易SG購入してみた

 ひさびさのブログ更新です.

 QPM-01と新VNシリーズのVN-L5キットの頒布を開始,現在QPM-01は完売しVN-L5も30セット用意して残り13セット(12/18現在)になりました.ご購入いただきました皆様ありがとうございます.

年明けにはもう少しQPM-01キットを用意しようと思っています.

ところでnanoVNAに始まる小型で安価な測定器がブームになっているようで,最近ではtinySAというハンドヘルドなスペクトラムアナライザまで登場し,SNS上で話題になっています.

私も先日遅まきながらtinySAとアナログ帯域120MHzをうたっている小型携帯オシロスコープをAliexpressで購入して到着を待つばかりです.

それらとは別に今回紹介するのは,V/Uハンディ機の受信調整用という名目でAliexpressやeBayで出品されている小型のSG(信号発生器)です.

大きさはFT817の奥行きを3分の2くらいにした小さなもので異様に軽いです(100gくらい?).電源ケーブルはもちろん説明書すら入っていません.モデル名もなくて一見自作物のようです.

商品説明に簡単な操作法やスペックが示してあります.

出力周波数は0.5MHz~470MHzで出力レベルは-70dBmから132dBmまで1dBステップで調整できて,内蔵の低周波発振器によるアナログFM変調やディジタルFM変調をかけられますが,AM変調や変調レベル調整はできないようです.この辺はあくまでもV/UのFMハンディ機用と銘打っているところからこういった仕様なのでしょう. しかし0.5MHzから出力が可能であることからHF帯の受信機などの調整に重宝しそうです.

電源端子はセンタープラスの2.1mmのごく標準的なDCジャックなのでいくらでも流用ができます.

とりあえず電源を入れてVN-160L5試作機のアンテナに接続して感度をチェックしてみます.

 出力レベルを下げていくと表示で-110dBm以下の信号が聞こえなくなります.

こんな感度悪かったかなー?と思い近くにあるIC-9100というメーカー製のトランシーバーにつないでみるとやはり同様にレベルを下げて-120dBm表示になるまでには信号が聞こえなくなります.

そこで手持ちのスペアナでこのSGの信号レベルをチェックしました.RIGOLのDSA815-TGにはプリアンプが付いていてRBWを30Hz以下にすることによってノイズフロアを-130dBm程度に下げることができますが,ノイズすれすれの-130dBmでは測定ごとにレベル値が変動してしまうためおじさん工房のAPB-3で測定することにしました.APB-3はRBWを10Hzに落とすことによってノイズレベルは-140dBm程度まで抑えられるため-130dBmの信号も捉えることができます.

下は0.5MHzから45MHzまでいくつかのスポットで-70dBm表示出力レベルを測定した結果を合成した図です.

 この結果を見てみると0.5MHzでは-100dBm程度,2MHzでは-90dBmと-70dBmの表示からかけ離れたレベルでした.5MHzあたりからようやく表示に近いレベルになりほぼ一定になります(測定誤差もありますが,表示より1dB程度大きいです).

この個体だけということかはわかりませんが,少なくとも5MHz以上でないと表示通りの出力レベルは得られないようです.

ではレベル調整のほうはどうでしょうか。

 これは10MHz出力信号レベルを-70dBmから10dBずつ下げていった時の出力レベル測定結果を合成した図です.

レベルを下げていくと表示より徐々に表示出力レベルより大きくなる傾向で,-130dBm表示では約3dB程度の誤差が見られました.

このSGを出品しているところも出力レベルが低いところで表示よりやや強いレベル,と書いてあるそうです.(未確認ですが)

 もう一つ気になるところがあります.

 上図はDSA817TGのフルスパン(0~1.5GHz)でSGの出力を観察すると497.5MHz付近で-50dBm程度の比較的レベルの高い信号が見られました.出力周波数を変化させると290MHzあたりまでこの波は変化しません.ところが190MHzあたり以上になると,497.5MHzの柱は消えて今度は260MHzあたりに-50dBm程度の同じ信号強度をもつシグナルが観察されました. 

内部のVCOの漏れ信号なのかは定かではありませんが,-50dBmはどの出力レベルよりも大きく,出力信号との混合波まで観察されます.

出力に適切なLPFを挿入すると実用域は5MHzあたりから290MHzくらいでしょうか.5MHz以下ではレベル補正を加えれば使えないことはなさそうです.

あまりにも軽いので中を開けてみるとやはり中はかなりスカスカな状態でした.右側にはSG本体部と思われる基板が見られますが裏返しで取り付けてあって,なおかつホットボンドで固定されているため本体基板を外せずどのようなデバイスが使用されているかはわかりませんでした.いずれホットボンドを外して本体基板の実装されているデバイスを確認してみたいところです.

SGといえばかなり大型で重いものがほとんどで,最近は比較的小型のものも見かけますが中古市場では見かけず新品はかなり高価でアマチュアが手を出せるものではありません.しかしこのような簡易的なものでもその特性を把握すれば受信機の感度測定や調整など結構重宝しそうです.

2020年11月7日土曜日

VN-L5シリーズのマニュアルができました

 VN-L5シリーズの組み立て操作マニュアルができました。キット頒布に先行して公開します。

マニュアルのpdfファイルはここに置いてありますのでダウンロード、閲覧はご自由にどうぞ。

ただし無断2次配布や他所へのアップロードは禁止です。

実際のキットの頒布はまだもうしばらくお待ちください。

2020年8月5日水曜日

VN-L5シリーズ正式リリース版ほぼ完成

VN-L5シリーズ(VN-160L5, VN-80L5)は人柱版頒布から約半年かけて正式リリース版がほぼ完成しました。


サイズ的には従来のVN-xx02シリーズと比較して5mmほど厚くなる程度に抑えました。

ハードウエア的には基本構成こそVN-xx02シリーズを基にしていますが、いろいろと手を加えています。

まず送信部ですが、終段をE級プッシュプル増幅回路とし電源用の大きなMOSFETに変更するなど強化した結果、電源電圧14.5V前後で20W出力可能になりました。QRPで運用する場合は7.4V(リチウムイオン電池2セル直列)に下げるとちょうど5Wとなり余裕をもって運用できます。また高効率のおかげでヒートシンクなしでも通常CW運用に耐えられます。一方出力が20Wクラスと比較的高出力のため保安機能(フューズやSWRが著しく上昇(アンテナトラブルなど)した場合の保護機能(高SWR検出し終段への電源を遮断)を付加しました。さらにプッシュプル増幅のおかげで偶数次の高調波レベルが比較的低く、LPFは定K型2段の最低限の構成でも新スプリアス基準を十分クリアしています。

アンテナ側の送受切り替えは小型リレーを使っています
右下の端子はバッテリー電源用のT型コネクタです
Si5351Aからの送信用信号の矩形波からトランスで180°位相差信号を作り、3ステートバッファロジックICの各々3つのバッファを並列接続したものに接続して、バッファ出力から終段の各NchMOSFETのゲートを駆動
受信部はVN-xx02の構成(高1中2)を継承していますが、ミクサーにはNJM2594というバランスドモジュレータICを、検波にはショットキーダイオードを使ったオーソドックスなリング検波に変更しAFアンプとAGCアンプの定数を見直して部品点数も幾らか減らしました。

複同調回路で使用するLをトロイダルコイルからチップインダクタに変更 中間周波数への周波数変換回路にはDBMモジュールからNJM2594Vに、ショットキーダイオードなどディスクリートで構成した検波回路に変更
送信部の基板に重ねたときに送信部のパーツと干渉してしまうため、検波回路のトランスは裏に装着
AFとAGC増幅には4回路入りの単電源オペアンプICを使い、回路も少し簡略化しました
コントロール部はVN-xx02シリーズと同じPIC24FV32KA302を使っていますが(パッケージはSOICからSSOPに変更しています)、表示部を従来の8x2から16x2タイプに変更し表示を充実させています。また電源スイッチについては比較的大きな電流が流れることからVRのスイッチでは余裕がないため、TX部の基板に装着したPch-MOSFET(μPA2815T1S)をVRのスイッチで制御して電源をオンオフするというスタイルにしました。

VRのスイッチはTX基板上のPchMOSFETのゲートに接続して電源オンオフの制御をしています
PICはSSOPパッケージに変更 基板上の部品密集度はそれほど高くありません
送信時のAFミュート回路やSi5351AのVDDとVDDO間にデカップリングなど追加しました。
裏側のTコネクタは同じコネクタを持つラジコンなどでよく使われているリチウムイオンやニッケル水素2次電池が接続できるように増設しました
というわけでハード的には思い描いていた機能などはすべて実装できました。

ソフト的にもいろいろと機能追加など行いました、LCDは16x2に変更したことから表示領域が広くなったため Sメーター表示の変更、XIT機能、VFO B、電源電圧表示、送信パワー、SWR表示、高SWR(10以上の極端な高SWR)時終段への電源供給をストップしてMOSFETへの長時間のドレイン電圧上昇による焼損を回避する機能を追加しました。

SWR表示

送信パワー表示
高SWR表示(SWR>10)


3Dプリンタでサイドパネルを作成してスピーカーも内蔵できるようにしました。
また本体に装着する小型のパドルも後ほど追加できるようにしたいところです。

80m版 VN-80L5(左後ろ側)160m版 VN-160L5(右下の前)
これでほぼ正式頒布版は完成しましたが、部品調達やマニュアル作成など作業はまだ残っています。

引き続き進めていきます。

2020年6月16日火曜日

USB入りのPICにブートローダを仕込む実験の備忘録

マイクロコントローラ(マイコン)にファームウエアなど実行ファイルをプログラムするのには、たいていはそれ専用のプログラマ(PICではPickitシリーズ、AVRではAVRISP、STMではST-Linkなど)が必要になります。

しかしデバイス自身にプログラムが可能なマイコンであれば、ブートローダという書き込み専用プログラムをデバイスに組み込むことで、外から転送された実行ファイルを自身のフラッシュメモリに書き込む事が出来るので、いちいち専用のプログラマを取り出して書き込みしなくても済みます。

転送方法はUARTとUSBが主のようで、PC側では転送用のソフトウエアを用意することにより基本的にPCさえあればいくらでもファームウエアの書き換えが可能になります。

Arduinoはブートローダがすでにマイコンに組み込まれた状態で販売されています。ユーザーはArduino IDEさえPCにインストールすれば、このソフトウエアだけでコードを書いて、コンパイル、そしてUSBなどを経由して簡単にプログラミングが出来てしまうという手軽さからいろんな電子工作界隈で普及しています。(もう少し高度なMbedもそうですね。Raspberry Piもありますが、近年ほとんどPC化しているのでもう別物です(笑))

もちろん無線電子工作のAKCのメンバーも自作機器の制御に好んでArduinoを使っておられます。

Arduinoが好きじゃないわけではありませんが、同じことしても面白くないしPICでも簡単にできないだろうかと思っていました。もともとUSB内蔵のPICでPIC18F14K50は以前から秋月で扱っておりマイコンボードも購入していましたが、USB対応には外付けXTAL発振が必要で2ポート取られるためいまいち乗り気にならずそのまま放置状態でした。しかしつい最近(1年ほど前から扱っているようですが)PIC16F1459というUSB対応のモデルを見つけました。EEPROMは内蔵していませんが、外付けXTALを必要とせず内部発振でUSB対応可能な点に惹かれ、早速秋月から取り寄せてブートローダ組み込みとプログラミング実験を行いました。

1.ブートローダ組み込みで必要なモノ
・USB内蔵PIC
これがないと始まりません(笑)今回はPIC16F1459を取り寄せました。DIPタイプは秋月で1個190円とPIC18F14K50より安価でピンコンパチです。

・周辺部品
実験用なのでブレッドボードで組みますが、0.1μFのパスコンと3.3Vレギュレータ用の0.33μF程度のパスコン、ブートローダ起動選択用のボタンとポート用プルアップ抵抗10kΩ、ステータス表示用のLEDと電流制限抵抗1kΩ、microUSBコネクタDIP変換ボード、配線ワイヤ、USBコード(microUSB-USBtypeA)くらいでしょうか。

・PC
言わずもがなですが、私はWindows10の自作PCを使っています。

2.ブートローダイメージファイルの準備
ブートローダのhexファイルはmicrochipでは公開されていません。MLAといういろいろなサンプルコード集の中からブートローダ用サンプルプロジェクトをMPLAB X IDEに取り込んでXC8pro版でコンパイルし、PICにプログラムしなくてはなりません。
ネット検索で内蔵発振に対応したブートローダのhexファイルを見つけることができるかもしれません。見つけたらダウンロードし実験用として利用するのも手です。
一方自前でファイルを生成する場合ですが、XC8のpro版を個人で所有するケースは稀です。Free版の場合でも少々コードを変更するとコンパイル通りますが、ファイルサイズは大きくなります。手順は検索するといくつか出てきますので参考にする事が出来ます。
それとはまた別にファイルサイズが極めて小さくなるブートローダもGitHubで公開されています。

3.PICへのブートローダのプログラミング
ブートローダの組み込みにはPickit3などのプログラマはやはり必要です。MPLAB X IDEでブートローダをコンパイルして直接プログラムするか、hexファイルをMPLAB X IPEで取り込み通常通りにPICにプログラムします。

 4.ブートローダの起動とユーザ作成ファイルのプログラム
あらかじめHIDBootloaderWindowsというソフトをダウンロードし起動させ、ブートローダ起動選択ボタンを押しながらPIC側からPCのUSBコネクタに接続するとPCがPICを認識します。HIDBootloaderWindowsで接続が確認されたら、ユーザ作成のファイルを選択してプログラムボタンを押すとPICに書き込まれます。リセットボタンを押すとユーザ作成のソフトが起動します。

5.ユーザプログラムをビルドする上での注意点
PICに組み込んだブートローダが格納されているメモリ領域を避ける設定を加えます。詳細はネット上に解説がいくつかあるので検索してください。

6. ブートローダのデメリットについて
・フラッシュメモリの消費
ブートローダはPICのフラッシュメモリに格納されているので、その分ユーザアプリケーションで使える容量が減ります。PIC16F1459の場合約3分の1が消費されます。XC8Free版で生成された場合それ以上にフラッシュメモリ領域が占有されてしまいます。
・venderID, productIDについて
個人的な実験や使用についてはあまり問題はないのですが、小ロット頒布を含めて商用利用する場合は少なくともUSB-IFへの申請が必要になりますとくにMLAを利用する場合microchip社との契約も必要になるかもしれません。かかる費用もそれなりに高く個人での利用はかなり難しいです。(ただしある一定数の範囲内のものについては、サブライセンスにするなどメーカーによっては敷居が低い場合もあるようです。)

ともあれ取り寄せたPIC16F1459にブートローダを組み込み、テスト用プログラムを書いてビルドしたファイルをPickit3なしでプログラムして動作させる事が出来ました。


Arduino IDEとまではいきませんが、専用プログラマーなしでプログラムできるのは快適ですね。

2020年3月20日金曜日

VN-L5シリーズ進捗状況

昨年末から立ち上げたVN-L5シリーズの開発進捗状況です。


9名の人柱版製作者からフィードバックをいただきながら改善や機能追加を行い、正式リリースに向けてほぼ仕様が固まってきました。

大きな改善点は、送受切り替え時のノイズとサイドトーンポップノイズの低減、キーイングの立ち上がり部分を緩やかにするソフトキーイングの実装です。

ソフトキーイング処理前の送信波形(黄色)
ソフトキーイング処理した送信波形
ソフトキーイングは以前より実装したかった機能で、送信開始から数ミリ秒ほど定間隔のパルス波で終段の電源制御を行い立ち上がりを鈍化させています。

そのほかエンクロージャと小型の内蔵パドル作成しました。

プログラムの不具合もほぼ解消し、最終的な基板作成に移ろうと思います。

フィードバックいただきました人柱版製作者の皆様にこの場をお借りして御礼申し上げます。

2020年2月12日水曜日

関西自作の会&関西ハムシンポジウム2020に参加しました

かねてから参加したいと持っていたJG3PUP山口OM主催の関西自作の会がちょうど関西ハムシンポジウム2020の前日に開催されることになり、初めて参加させていただきました。

阪神尼崎駅近くのホテルにチェックインしてからすぐ会場に向かいましたが、数分遅れで到着したところ窓側のテーブルに各参加者の自作品が並びすでに盛り上がっておりました。
窓側の広いテーブルにたくさんの自作品が!!
というわけで、10名あまりの参加者で17時からスタートし食事やお酒をたしなみながら休む間もなくずーっと自作の話を続けていたらあっという間に22時すぎ・・・いろいろなお話が聴けて楽しかったです。そのあとtwitterでも長いことお世話になっているJP3AEL高橋OMと会長でAKCメンバーのJA6IRK岩永OMと2次会にお付き合いさせていただきました。

中央の細長い黒ボディのミニパドル 優れモノです
今回ハムシンポで岩永OMが頒布した3Dプリンターで作製したミニパドルを拝見させていただましたが、非常に良くできていて操作感もとてもFBな作品でした。ご本人は売れるかどうかと仰っていましたが、多分すぐに売れてしまうだろうと予想していましたらやはりすぐに完売したようです。 増産されるようでしたら1台欲しいなあと思いました。電極にリン青銅版を使用してパドルレバーにもたわみ防止にひと工夫されていて、しかもレバーが収納可能になっています。そこにネオジム磁石も装備しているということでした。軽量なので移動運用にピッタリですね。

ホテルに戻ったのは午前1時近くですぐに就寝し、翌朝大浴場(ビジネスホテルで大きな浴場があるのがポイント)にはいって朝食を摂りゆっくりしてからチェックアウトし電車で一駅移動して関ハムシンポの開場へ向かいます。


 ブースは会場中ほどのいつものリトルガンくらぶブースでしたが机2つ使えたのでゆったりと展示できました。7J3AOZ白原OM&奥様にはいつもお世話になりありがとうございます。

今回は従来のVNシリーズ、VSWRメーターQPM-01キット頒布のほか新VNシリーズであるローバンド用コンパクトCWトランシーバVN-L5の実機展示を行いました。

下のVN-80L5はJE3QDZ吉村OMの人柱版完成機です
この新VNシリーズは基板サイズは従来のVNシリーズと同じ80x60mmのコンパクトに収めコントロール部、送信部、受信部の3枚構成となっており、送信部はプッシュプルE級増幅回路で13.8Vで20Wに迫る出力を出しながら高効率のため放熱板を設けていません。

ありがたいことに展示用として持参した9台目の人柱版キットは頒布する予定はありませんでしたが、熱いご希望により頒布させていただきました。160m版として作成していただけるようです。頑張って完成させていただきたいと思います。

昼休みに会場外のメーカー展示で目にしたのは予約が始まったICOM社のIC-705実働機でした。


自分が開局した当時はVHF帯のコンパクト機が各社から盛んにリリースされていましたが、この2020年に新しいコンパクト機が出るというのはまた感慨深いものがあります。
しかもSDRでHFからV/Uまでカバーするコンパクト機、時代の流れを感じますね。ちょっと見でしたがWF表示などフレームレートやカバー域も十分実用的です。これに今はやりのnanoVNAを携えて車を使わないマルチバンド移動運用なんか比較的手軽にできそうじゃないですか。またD-STARはもちろん搭載済みですがBTなどPC接続もできそうなのでスマートフォンを使ってデジタルモード運用など応用範囲が広そうです。


隣にIC-705瓦煎餅が展示されていましたので、思わず撮影しました(笑)
予約するともらえるそうですが、外缶がIC-705が印刷されているようです。自作派を自称するものとして中身の専売をいただいたら、これをケースにしてマルチバンドのトランシーバーでも詰め込んでやりたいなと妄想しました。

そういうわけであっという間の2日間でしたがとても濃い2日間でした。帰りに白原OM夫妻に美味しいうどん屋さんにお誘いいただきました。写真は撮り忘れてしまいましたが出汁が良く効いた大変美味しいうどんでした。ありがとうございました。

次回は関西アマチュア無線フェスティバルKANHAM2020にAKCとして参加する予定になっています。

追伸:

確定申告の時期で少し忙しくなるので遅くなりますが、関ハムシンポが終了しましたのでVNシリーズなどの通信頒布を再開します。すでに何件かお問い合わせいただいておりますがもうしばらくお待ちください。